
2D Arrays

Multi-dimensional arrays are easy to work with in
Java. We will here work with 2D arrays that you
can think of as having rows and columns. Java
allows arrays to have 3, 4, or even more
dimensions, but 2D arrays are the most common
of the multi-dimensional structures.

The type of a 2D array with base type E is

E [][]

The constructor for such an array with N rows and
M columns is

new E[N][M];

For example, we might make an array of ints with 5
rows and 3 columns with

int[][] A = new int[5][3];

When you are working with an array of objects,
note that

new E[5][5];
doesn't construct objects of class E; it just makes
an array with 25 slots that can hold pointers to E
objects.

A 2D array is not laid out spatially in memory,
but we usually think of the first index as
referring to the rows and the second index as
referring to columns. Note that the
organization in memory (which is inherently
linear) is <first row><second row><third row>....
This means that the elements of any row are
consecutive in memory and can be treated as a
1D array. If M is a 2D array then we can refer
to M[0] as its first row, M[1] is its second.
There is no easy way to refer to the columns of
M.

We usually process a 2D array with a double for-loop:
an outer loop over its rows and an inner loop on the
column entries of a specific row.
For example, we might find if array M contains
element e with

public boolean contains(E[][] M, E e) {
for (int row = 0; row < M.length; row++)

for (int col = 0; col < M[row].length; col++)
if (M[row][col].equals(e))

return true;
return false;

}

For example, in Lab 3 we work with arrays that
represent mazes.

Here is a typical maze file:

3 5
0 0 1 0 0
2 0 1 0 3
0 0 1 0 0

The first two numbers are the number of rows and
the number of columns of the maze. The rest is a
2D array of integers that indicate, walls, entraces,
etc.

In Lab 3 we make a Square class that represents one square
of this array. It is useful for Squares to know their location
in the maze, so the constructor for Square asks for the
square's row, column and type. Here is the code I use to
read such a file:

Scanner reader = new Scanner(new File(fname));
numRows = reader.nextInt();
numCols = reader.nextInt();
Square[][] maze = new Square[numRows][numCols];
for (int row = 0; row < numRows; row++)

for (int col = 0; col < numCols; col++) {
int type = reader.nextInt();
maze[row][col] = new Square(row, col, type);

}
}

